Unit-06 RLC Series Circuit Experiment II

Objective:

In this experiment, we study the frequency response of RLC circuit excited by a sinusoidal signal.

<u>Apparatus</u> :

Oscilloscope, function generator, resistor, capacitor, inductor

Principle :

From unit16 RLC circuit oscillations, we can get the second order differential equation.

$$\frac{d^2 V_c(t)}{dt^2} + \frac{R}{L} \cdot \frac{dV_c(t)}{dt} + \frac{1}{LC} \cdot V_c(t) = \frac{\varepsilon(t)}{LC}$$
(1)

In this experiment, we would study RLC circuit which is driven by a sinusoidal wave generate forced oscillations. Show in figure 1.

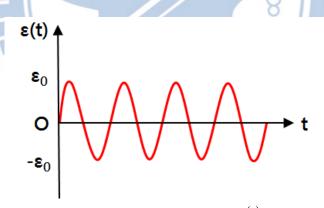


Figure 1. Sine wave of of $\varepsilon(t)$

While the electromotive force $\varepsilon(t)$ is written as $\varepsilon(t) = \varepsilon_0 \cos(\omega t)$, from equation (1), we can get

$$\frac{d^2 V_C(t)}{dt^2} + \frac{R}{L} \cdot \frac{dV_C(t)}{dt} + \frac{1}{LC} \cdot V_C(t) = \frac{\varepsilon_0}{LC} \cos(\omega t)$$
(2)

The solution of equation (2), can get the $V_R(t)$

$$V_{R}(t) = \frac{\varepsilon_{0}R}{\sqrt{R^{2} + \left(\omega L - \frac{1}{\omega C}\right)^{2}}} \cdot \cos(\omega t - \phi)$$
(3)

that

phase
$$\phi = \tan^{-1} \left(\frac{\omega L - \frac{1}{\omega C}}{R} \right)$$
 oscillation term $\cos(\omega t - \phi)$

Amplitude term
$$|V_R(t)| = \frac{\varepsilon_0 R}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$

The amplitude of $|V_R(t)|$ depends on the frequency. A graph of amplitude as a function of frequency will look like curve in figure 2. The amplitude of $|V_R(t)|$ reaches a maximum value ε_0 , when $\omega = \sqrt{\frac{1}{LC}}$. This condition defines the resonance angular frequency ω_0 , and this phenomenon is called **resonance**

The amplitude of $|V_R(t)|$ to $\frac{\varepsilon_0}{\sqrt{2}}$ at the cutoff frequencies ω_l and ω_k , as shown in figure 2. A bandwidth, a half-width of frequency, is defined as $\Delta \omega = \omega_h - \omega_l$.

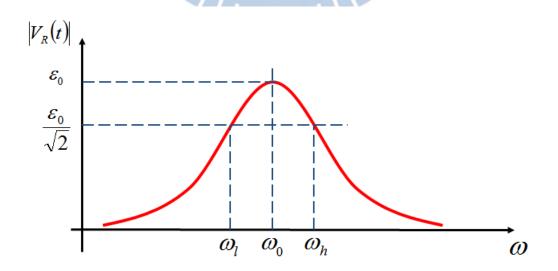
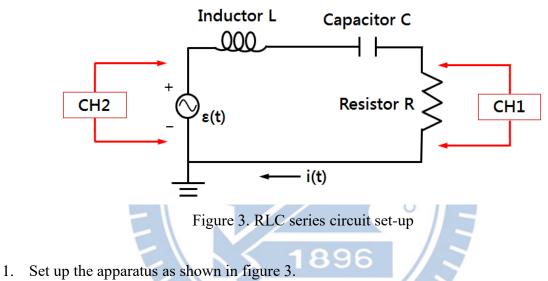


Figure 2. $V_R(t)$ Amplitude versus angular frequency diagram


For RLC series circuit, a half-width of frequency $\Delta \omega = \frac{R}{L}$, it's independent on the

capacitance C. Moreover, the resonance angular frequency depends on L and C. The characteristics of RLC circuit vary with the resistance, inductance and capacitance.

Remarks :

- 1. Make sure that your circuit is not a short circuit before you turn the power on.
- 2. Make sure that the function generator, oscilloscope, resistor and capacitor are off.

Procedure :

- 2. Set $R = 1 k\Omega$, L = 10 mH and $C = 0.001 \mu F$.
- 3. Calculate the resonance angular frequency ω_0 and resonance frequency f_0 .

$$\omega_0 = \sqrt{\frac{1}{LC}} \quad \& \quad f_0 = \frac{\omega_0}{2\pi}$$

4. Use the equation (3) to get the theoretical values of $|V_R(t)|$ and input signal phase

difference when the frequency is the resonance frequency.

5. Turn on the function generator. Set the generator to produce a sine wave with amplitude of 1.00 V.

[Note] that CH2 $V_{P-P} = 2.00$ V.

- 6. Set the output signal's frequency of function generator to resonance frequency f_0 .
- 7. Set the oscilloscope to Lissajous mode.
- 8. Adjust the frequency until we get the Lissajous pattern which frequency ratio is equal to 1 and the phase difference is zero.

- 9. Set the oscilloscope to normal mode and Record the frequency, and amplitude $|V_R(t)|$.
- 10. Vary different frequency several times, record frequency and amplitude $|V_R(t)|$.
- 11. Plot $4 \mathbb{E} |V_R(t)| \omega$ diagram.
 - [Note] It need to including resonance frequency f_0 and cutoff frequency ω_l and ω_h .
- 12. Used interpolation method to calculate cutoff frequency ω_l and ω_h .
- 13. Calculate half-width $\Delta \omega$ from this curve and compare with the theoretical value.
- 14. Keep the inductance L and the capacitance C constant. Vary the resistance R to 2 k Ω , and repeat the above steps.

Questions:

- 1. Prove the half-width $\Delta \omega = \frac{R}{L}$ for RLC series circuit excited by a sinusoidal signal.
- 2. What are different graphs with different resistances? Please explain.
- 3. If we keep the resistance R and the capacitance C constant, and vary the inductance L, how do the resonance frequency and half-width will change with the inductance? Please explain.

